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Abstract 

The hybrid Molecular Dynamics - Fluctuating Hydrodynamics model is extended for multi-

resolution simulations of molecular diffusion in water under a steady shear flow. Cases of 

water self-diffusion and a small protein diffusion in water are considered. For the switched-

off flow effect, the model is validated in comparison with the reference all-atom equilibrium 

molecular dynamics solution. With the flow effect included, the multiscale model correctly 

captures the meanflow velocity distribution as well as the difference between mean square 

deviations in different directions with respect to the flow in accordance with the diffusion 

theory. Results of the simulations are analysed in the context of using hydrodynamic flow 

gradients for molecular diffusion focusing. 
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1. Introduction 
 

In the past few decades, Microfluidic (MF) technology has become a research topic of 

increasing interest, as it can be used for a wide range of practical applications, such as 
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biomaterial synthesis. In comparison with traditional bench-scale systems, microfluidic 

devices are advantageous because of their low fabrication costs, less material and reagent 

consumption, improved performance, reduced measurement time, and higher analysis speed 

[1], [2]. The well-established manufacture of MF devices offers an opportunity for 

optimisation of complicated channel designs [3], [4] with reproducing specific flow 

characteristics and accurate timing between different phases of material synthesis [5]. For 

example, MFs are useful for the study of biofilms because of their ability to precisely adjust 

the wall shear stress, chemical gradients and the temperature. One important application of 

MFs is in microfabrication of liquid interfaces created by two-fluid laminar flow in 

microfluidic channels where controlled chemical reactions can be implemented [6], [7]. The 

shear flow gradient created under low Reynolds number flows are also extensively used in 

biotechnology [8], microreactors [9], biological membrane fabrication [10], as well as in 

chemical separation, extraction and detection [11]–[14].  

In most two-fluid laminar flow devices, there is a dense working fluid used such as water at 

normal conditions, the operational flow speed is low, and the geometric size of the flow 

device is macroscopic. These make flows in such devices amenable to continuum mechanics 

of incompressible flows. Computational methods for solving incompressible Navier-Stokes 

equations, such as the pressure correction method by Chorin [15], exist since the 1960s. At 

the same time, it is well-known that continuum mechanics models break down in cases where 

a characteristic dimension of the investigated system reaches nanoscale as in the case of flow 

inside a nanotube [16]. The same is also the case in dual-stream laminar-flow modelling if in 

addition to the bulk flow modelling it is also required to resolve chemical reactions at the 

interface between the two streams. If both the hydrodynamic flow and the internal liquid 

structure together with constitutive properties of the liquid interface are to be simulated in a 

micro-fluidic device, a multi-resolution method has to be used. 
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Not surprisingly, multi-resolution modelling of liquids under parallel shear flow conditions, 

the so-called Couette flow, has been a popular benchmark case in the multiscale modelling 

literature. The Couette flow can be readily realised in the experiment by considering a 

viscous fluid contained in a small channel where one of the parallel walls is moved so that it 

slides at a constant distance with respect to the other wall. The analytical solution in 

continuum mechanics either for the start-up or the steady Couette flow is also easy to 

establish since the governing incompressible Navier-Stokes equations reduce to a one-

dimensional diffusion problem in this case. At the scale of discrete molecules, the problem 

becomes hardly amenable to analytical modelling. Hence, both the start-up and the steady 

Couette problem have been in the focus of investigation of hybrid molecular dynamics (MD) 

- continuum mechanics models. 

The simulation domain typically contains both the fluidic and the solid wall part of the 

problem where one wall is stationary and the other one is moving. For simplicity, in many 

cases the interface between the MD and continuum mechanics part is aligned with the plane 

of the walls, which allows treating one of the walls at a fully atomistic resolution and 

simulate the effect of the other wall with continuum mechanics.  

In the literature, there are various strategies used to connect the MD particle and the 

continuum fluid dynamics description of the liquid contained by the walls. For example, in 

the MD-continuum mechanics model [17], [18], a finite overlap region is utilised for 

coupling state solution variables of the two representations with achieving a good consistency 

of the mean-flow velocity profile on both sides of the interface zone with the analytical 

solution. The same meanflow solution consistency is achieved by [19] who used a flux 

coupling scheme to connect mass and momentum fluxes of the continuum and atomistic 

representations on the opposite sides of the interface. Alternatively, as it was shown by [20], 

one can use the point-wise coupling (PWC) hybrid approach for the same computational 



4 
 

domain decomposition between the continuum and the MD parts of the solution. The latter 

implementation also probed the solution sensitivity of hybrid approaches to factors like the 

width of the molecular dynamics domain, the channel height, and the wall roughness. 

Sensitivity of the Couette flow solution to the parameters of MD-continuum mechanics 

coupling was also tested by [21], who combined two open-source solvers in the hybrid model, 

LAMMPS for the MD computation and OpenFOAM for the continuum flow modelling. In 

the study, both the effect of the solid wall density and the solid-liquid interaction on the non-

slip boundary condition of the Couette flow problem are investigated. Under a suitable 

calibration of the model parameters, it is shown that the solution of such hybrid model for the 

velocity distribution profile can be in a good agreement with the analytical solution 

regardless of whether the moving wall boundary condition is applied on the continuum or the 

atomistic side of the computational domain. 

Hybrid all-atom molecular dynamics – continuum mechanics schemes are not the only 

example of multiscale methods which have been tested on the Couette problem. From the 

class of multi-resolution MD particle schemes, Smooth Dissipative Particle Dynamics (SDPD) 

has been applied by [22] to test accuracy of the SDPD model over a range of particle scales 

for the same Couette problem. In comparison with the MD-continuum mechanics studies, the 

no-slip boundary correction applied on the walls of the SDPD model was imposed with an 

adaptive shear correction. In such implementation, one of the walls corresponds to a fine 

particle resolution, the other wall corresponds to a coarse resolution, and the two 

representations are connected through the hybrid interface of a finite thickness that is aligned 

with the walls. Again, the consistency of the multiscale model was demonstrated by a good 

agreement of its locally averaged hydrodynamic solution field with the analytical meanflow 

velocity solution in both the coarse and the fine resolution parts of the simulation domain. 
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The Couette problem has also been used as a test bed for further sophisticated hybrid multi-

resolution models, such as the ones which combine an all-atom MD, a mesoscale particle 

model, and a continuum hydrodynamics description. For example, a triple-decker algorithm 

that couples the MD, DPD and the Navier-Stokes equations was developed by [23]. In this 

model, the top wall, which moves at a constant velocity, is a part of the continuum 

hydrodynamics solution. The interfaces between the continuum hydrodynamics and the 

mesoscale (DPD) particle zone and between the DPD zone and the MD part are aligned with 

the flow. A two-layer DPD/MD version of the same triple deck model was also tested. To 

simulate the non-slip boundary condition, a combination of numerical pressure force, 

specular reflection and adaptive shear force, which depends on the distance of the particle to 

the boundary, is used. On the hybrid interface, an adaptive shear forcing is applied to prevent 

the “phase separation”. It was shown that, for an appropriate calibration of the model 

parameters with and without a finite overlap between the different zones, a good agreement 

with the analytical meanflow velocity solution is obtained. Another example of a “triple-

decker” scheme application for the Couette flow problem can be found in [24] where the 

SDPD model by [22] was combined with the AdResS method [25] to obtain a compound 

multi-resolution SDPD-MD algorithm. In comparison with other hybrid simulations of the 

Couette problem, the mentioned model not only considered the case where the hybrid 

interfaces between the MD and coarse-grained representations of liquid are parallel to the 

walls but also when the hybrid interface is normal to the wall plane. The model performance 

under various combinations of the calibration parameters is tested. In each case, a good 

agreement with the reference analytical solution for the meanflow velocity profile is 

demonstrated. A further example of “triple-decker” algorithms can be found in [26], which 

also uses the AdResS interface to combine MD and DPD in order to bridge the micro- and 
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mesoscopic descriptions. For a smooth supramolecular coupling in hybrid simulations of 

water at ambient conditions, that work uses a molecule clustering algorithm. 

 

Despite the abundance of hybrid multiscale methods, which have been tested on the Couette 

flow problem, the number of publications where multi-resolution modelling has been applied 

to study the transport properties of complex inhomogeneous fluids beyond the idealised cases 

of argon or pure water is much less. For example, in addition to the existing publications 

which are focused on the diffusion and visco-elastic properties of homogenous polymer melts 

under velocity strain conditions [27]–[30], the only other publication known to the authors 

where a multi-resolution method has been applied for a composite fluid under flow is [31]. 

However, the focus of the latter simulation was to compute the Stokes drag exerted on a golf-

ball-shape buckyball particle (C540 fullerene) under the effect of a uniform flow field, where 

the nanoparticle displacement due to flow effects was neglected. 

On the other hand, multi-scale modelling of complex heterogeneous fluids such as a 

biomolecule diffusion in water under shear flow conditions would be of direct relevance to 

the design of microfluidic devices. For example, it can be expected that molecular diffusion 

properties at the interface between the two flow streams of dual-stream flow devices are 

different in comparison with molecular diffusion away from the interface since the velocity 

strain affects diffusion speed especially for anisotropic and non-Newtonian fluids [32], [33]. 

Hence, scale-resolved modelling of molecular diffusion under shear conditions is in the focus 

of the current publication. 

In molecular dynamics simulations, there are two popular methods to calculate the molecular 

diffusion coefficient. One method is based on the non-equilibrium molecular dynamics 

(NEMD) simulations [34]–[36], [37], where an explicit forcing is applied to the solid wall 
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atoms, which generates drag on the fluid in the Couette problem. The second method is based 

on the classical equilibrium MD simulations in accordance with the statistical mechanics 

theory, which uses the Einstein relation [38] or the Green-Kubo integral formula [39], [40]. 

The Einstein relation connects the diffusion coefficient to the slope of the mean square 

displacement of the diffusing particle trajectory, while the Green-Kubo integral formula 

calculates the same based on the integral of the velocity autocorrelation function. For 

numerical simulations, the Einstein method often appears more preferable in comparison with 

the Green-Kubo method since the particle coordinates can be calculated more accurately in 

comparison with the particle velocities which involve an extra differentiation [41]. The 

Einstein relation method is selected for computing the diffusion coefficients in the 

simulations based on the hybrid multi-scale method in the present work. 

The current hybrid method is based on the two-phase flow analogy method for smoothly 

coupling the continuum mechanics description with MD via a specific buffer zone, which 

was first introduced in [42] and subsequently tested for a number of idealised molecular 

systems in [43], [44]. Within this framework, thermal fluctuations and other unsteady fluid 

mechanics effects are included by assuming that the continuum mechanics part of the model 

is governed by the Landau and Lifshitz Fluctuating Hydrodynamics equations (FH) [45]. 

Similar to other state variable schemes, the method uses a hybrid zone for coupling the MD 

and continuum representations of the two fluids. An analogy with two-phase flow modelling 

is used in the formulation of the hybrid coupling scheme. By introducing an MD particle and 

a continuum representation of the same liquid, the analogy method is formulated as equations 

for local conservation of mass and momentum fluxes of a nominally two-phase flow in the 

entire computational domain. The concentration of the continuum part of the flow is a user-

defined function that controls the local resolution of the multiscale model. The continuum 

phase is modelled with a Eulerian approach and the MD particle phase is modelled with a 
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Lagrangain description. The “phases” are assumed to be in equilibrium and finely mixed one 

with another so that the interface effects in the two-phase mixture are not relevant. To avoid 

the artificial phase separation and preserve the continuity of variances of macroscopic flow 

quantities across the different phases, forcing terms are introduced as sources and sinks in the 

conservation laws for mass and momentum without affecting the local conservation property. 

In a further work of the authors [46]–[48] a simplified, one-way coupled version of the 

original hybrid method was developed for 3D simulations in GROMACS [49], [50], a 

popular open-source MD software. The simplified implementation assumes no feedback from 

the microscopic MD part of the solution on the macroscopic hydrodynamic part and also uses 

discrete particles in the entire computational domain so that the computational saving may 

come purely from skipping the calculation of particle–particle interactions in the 

hydrodynamic part of the solution domain. Despite these drawbacks, the model showed 

promise for simulations of a PCV2 virus capsid in water [47], [48]. In particular, the hybrid 

model is shown to correctly reproduce a stable capsid in a small computational domain and 

capture the relevant macroscopic transport characteristics of water and ions through the virus 

capsid compared to the reference all-atom simulation. More recently, a triple-scale one-way 

coupled scheme that combines the two-phase hydrodynamic analogy approach with multi-

resolution molecular dynamics simulations (AdResS) has been developed [51]. By 

accounting for a smoother transition between the multi-atom water molecules to 

hydrodynamic particles in the flow, the triple-scale scheme is shown to lead to a reduced 

sensitivity to the model parameters while achieving an improved accuracy in test problems in 

comparison with the baseline MD-FH algorithm. A fully coupled two-phase analogy model 

for argon has also been implemented with taking into account the feedback of MD particles 

on the flow in [52]. The model demonstrated excellent accuracy for the Couette problem of 

liquid argon flow. 
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In the present publication, the Couette flow implementation of the two-phase analogy method 

for water and peptide systems will be considered for the first time in the literature. For the 

current application, the one-way coupled acoustic analogy model [46], [47] will be extended 

to the shear corrected boundary conditions. After an appropriate calibration and validation of 

the suggested implemenation is completed, it will be applied to the simulation of a small 

peptide diffusion in water under the shear flow effect. The numerical results of molecular 

diffusion modelling in water will be compared with the reference data available in the 

literature [53]–[56]. 

The paper is organised as the following. Section 2.1 briefly introduces the theoretical 

background of the two-phase analogy method for coupling continuum and particle 

representations of liquids. A simplified version of the two-phase analogy method that leads to 

the one-way coupled MD-FH model is considered in section 2.2. An extension of the MD-FH 

model for the Couette flow is presented in section 2.3. In section 3, the results of the MD-FH 

model for the Couette flow are presented and discussed with reference to the all-atom MD 

simulations. The results include the comparison with the reference analytical solution for the 

meanflow velocity profile in subsection 3.1 and the study of water self-diffusion and a small 

protein diffusion in water in sections 3.2 and 3.3.  

 

2. Theory 

2.1 Two-phase analogy for coupling continuum and particle representations of the same 

liquid 

The hybrid two-phase analogy model for multi-resolution simulations of liquids [42] is 

summarised as follows. Large-scale continuum and fine-scale particle representations of the 

same chemical substance are considered as ‘phases’ of the same nominally two-phase fluid, 
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which are immersed into each other without any phase separation. The concentration of the 

continuum phase and the particle phase are 0  s  1 and 0  1-s  1, respectively, where s is 

a user-defined function of space and time that describes which part of the volume is 

represented by discrete particles and which by continuum. For example, in [47] the s-function 

was selected as a spherical distribution in space whose centre is locked with the centre of 

mass of a peptide molecule of interest that moves in water in accordance with the diffusion 

process. 

The process of phase mixing, which corresponds to changing of the model resolution, is 

specified by the sources on the right-hand-side of the mass and momentum equations of the 

phases. Under assumption that there are no macroscopic temperature gradients, the 

macroscopic temperature equation is irrelevant. This leads to a closed system, which contains 

the conservation equation of mass of the continuum phase, 

   )(
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and which is formulated on a Eulerian grid of hexahedral control volumes, V. 
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Here the fields which correspond to the particles are with a sub-index p and those which 

stand for the cell-volume averaged and the cell-flux averaged quantities (e.g. obtained from 

an appropriate reconstruction inside each cell in accordance with a finite-volume method) are 

without the sub-index. 6,..,1  are the faces of the control volume V, m and Vm /  are 

the mass and density of the continuum phase of the elementary volume, mp is the particle 

mass, 
pu  is the particle velocity, u  is the particle-continuum ‘mixture’ velocity, 

 /)1(
)(,1









 

 tNp

ippii ususu , 
iu  is the velocity of the continuum phase,   is the 

mixture density, 



)(,1

)1(
tNp

pss  ,  N t  is the number of particles in the control 

volume V which typically is at least O(100) for statistical convergence of the FH solution. 

)(tN
 is the number of particles crossing the 

th  cell face with the area normal 
nd  at time 

t, /p pm V   is the effective density of  particle p per volume V, 
t  describes the 

change of each quantity over time t , e.g. counts the particle mass and momentum 

accumulated in cell V over time t . 
ipF  is the total inter-particle interaction force exerted on 

particle p.  

For the continuum phase momentum equation, the Landau-Lifshitz Fluctuating 

Hydrodynamics model is used, which is implemented by adding the random stress tensor, Π
~

 

to the deterministic stress of the Navier-Stokes equations, Π  in order to account for the effect 

of Brownian motion.  

( )

t J
  and )(u

it J  are the mass and the momentum exchange terms between the two phases, 

which are a function of the user-defined phase concentration function s . These exchange 

terms control how fast the fine-scale particle phase (s = 0) is replaced by the large-scale 
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continuum phase (s = 1) in the computational domain to maintain a balance between the 

computational cost reduction and accuracy. 

Important properties of the system of conservation laws (1)-(4) include conservation of mass 

m V  and momentum fluxes in accordance with Newton’s second law that equates the 

change of the total momentum m u  to the force applied,  

 
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The two-phase analogy model is closed by defining the particle-particle interaction model 

(e.g. in accordance with classical Molecular Dynamics) and introducing the appropriate 

continuum-discrete source fields in the kinematic and dynamic equation for each particle so 

that, collectively, the particle phase satisfies the governing conservation laws (1)-(4). 

 

2.2 A single-resolution particle liquid in the fluctuating hydrodynamics bath 

 

Following the assumptions considered in [46], the effect of discrete particles on the 

macroscopic hydrodynamics is ignored, and the dependent variables of the hybrid two-phase 

mixture,   and iu  are replaced by the solution of the Landau-Lifshitz Fluctuating 

Hydrodynamics (LL-FH) model that represents the statistical properties of liquids at 

mesoscale: 
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Here )(pp   in accordance with the equation of state, the stress tensor Π  and its 

fluctuating component Π
~

 are defined so that 
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where   and   are shear and bulk viscosity coefficients, D  is the spatial dimension. Π
~

 is 

modelled as a random Gaussian matrix with zero mean and covariance: 
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Following [45], the stochastic stress tensor is represented explicitly so that 
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identity matrix, and  tr G  is the trace of the matrix G . 

The above leads to the one-way coupled MD-FH model when the hydrodynamic equations 

(5)-(8) are solved with a central finite-volume method [57]. The time step of the FH solution 

is 10 times larger in comparison with the MD step. For given O(100) particles per control 

volume the cost of solving the LL-FH equations is negligible in comparison with the MD 

simulation. The FH solution provides an effective hydrodynamic “bath” for particle 

“binding” with continuum hydrodynamics of Non-Equilibrium Molecular Dynamics 

(NEMD)-type in accordance with the equations for particle coordinates and velocities: 
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Here, the macroscopic fields correspond to control volume-averaged values and conservative 

fluxes are defined through the six sides of each control volume in accordance with the area 

normal 
nd , =1,..,6. All fields are interpolated to the current particle location. For 

simplicity, all functions inside the cell are reconstructed via a linear interpolation and the 

values of the fluxes are computed by interpolation in accordance with a central finite-volume 

scheme. , 0   are adjustable parameters that correspond to how fast the particle phase is 

forced to ‘diffuse’ to the Fluctuating Hydrodynamics solution in the hybrid region 0<s<1.  

If the no-flow case considered by [46], [47], and [48] the continuum velocity and the density 

field, u  and  , correspond to the zero-mean velocity fluctuations and the fluctuating density 

field in accordance with the equilibrium solution at given temperature, which are obtained 

from the numerical solution of the governing hydrodynamic equations (5-8).  

Further following [46], [47], and [48], the inter-particle interaction forces, 
ipF  are defined in 

accordance with the classical Molecular Dynamics and Eq. (9) is integrated with the standard 

velocity Verlet algorithm [58]. 
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The free parameters of the one-way coupling scheme,   and   are adjusted within the range 

of 10-100 nm2ps-1. Specific values depend on the application to achieve a sufficiently smooth 

but strong “phase binding” in each case. 

 

2.3 Adaptation of the MD-FH model to the Couette flow problem 

 

Let us consider a rectangular solution domain, where the flow is applied in the 1x -direction 

and the velocity gradient is applied in the 2x –direction, where 20 x L   and L  is the size of 

the flow domain in the transverse flow direction. 3x  is a homogeneous direction. Standard 

periodic boundary conditions are assumed in the 1x - and 3x - directions. The applied velocity 

strain is such that the achieved flow velocity at the bottom and the top walls of the domain 

are - maxV and maxV , respectively, which corresponds to a zero velocity of the system centre 

mass. For all numerical examples considered in the current publication, maxV  is 0.05 nm/ps 

and L  is 7 nm.  

For the steady shear flow conditions, the density is not affected by the shear but the 

hydrodynamic velocity solution needs to include the velocity strain component 1 2( )u x  in 

comparison with the no-flow case. In comparison with Eq(9), this leads to a modification of 

the corresponding particle coordination equation in the flow direction, 1x  
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where  



16 
 

 1 2 2 max( )u x x V       (11) 

and   is the velocity strain, which is equal to max2V

L
. 

Following previous implementations of the analogy method [46], [47], and [48], a spherical-

shape user-defined function  ,s s t x  is specified so that it is zero in the centre of the 

computational domain and grows to the domain periphery where the particles are driven by 

the “external” hydrodynamic field: 

    
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max min min
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 (12) 

where MDR  and FHR  are the radii of the discrete particle and the hydrodynamic zone which 

are user-defined parameters, r is the distance to the geometrical centre of discrete particle 

zone. The limiting values of the s-function used in the current model are 98.0,0 maxmin  SS  

(fig. 1a). Depending on the application, the geometrical centre either corresponds to the 

geometrical centre of the simulation domain or is locked to the centre of mass of a molecular 

system of interest (e.g. a moving peptide molecule considered in section 3.2). 

 

Periodic boundary conditions for particles are specified in all three directions of the 

computational domain. While the standard periodic conditions are applicable in the 

streamwise and the spanwise directions, 1x  and 3x , a shear-corrected periodic boundary 

condition is required in the 2x -direction.  

First of all, it can be noted that particles on the top boundary and on the bottom boundaries of 

the computational domain correspond to different flow velocities in the 1x -direction. The 
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velocity difference leads to an offset distance in the 1x –coordinate that accumulates when 

recycling a particle from one boundary to another in accordance with the periodic condition 

in the 2x -direction. The offset distance d  depends on the gradient of the flow, the size of the 

box, and the integration time step of MD particles: 

 max2d L t V t        (13) 

The integration time step of the current model, which has been adjusted for stability, is 0.001 

ps and the maximum velocity, maxV  is 0.05 nm/ps, which leads to the offset distance d  being 

very small in comparison with the intermolecular distance. Hence d  is neglected in the 

current simulations. 

 

The adjustment of the periodic boundary conditions in the transverse direction that is required, 

however, is to strictly enforce the effective non-slip condition at the top and the bottom flow 

wall for the particles. The particle velocity at the boundaries need to be rescaled for making 

sure that the mean particle velocities at the top and bottom boundaries of the computational 

domain are equal to the prescribed flow stream velocities. The rescaling correction is needed 

in addition to the current diffusion-based “binding” of the MD particles with the Fluctuating 

Hydrodynamics region of the hybrid model. The “diffusion” treatment is required to be 

sufficiently soft for a smooth particle transition from one representation to another and cannot 

strictly enforce the non-slip condition required for the Couette flow problem without the 

additional boundary correction.  

The enforcing of the non-slip boundary condition for particles is implemented as follows. The 

entire computational domain is divided into 16 layers in the transverse direction. The 

instantaneous mass-weighted average particle velocity in the flow direction of each layer 
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,layer ju  is calculated by summing up the corresponding contributions of all particles and then 

dividing the sum by the total mass of the layer:  
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Here j  stands for the layer number, 0 16j  , jN  is the number of particles per layer, pm  

and 1pu  are the mass and the 1x -velocity component of particle p of the layer. 

In order to enforce the appropriate shear-corrected boundary condition, the particle velocity 

fluctuation, 1pu  is computed by subtracting the average velocity of all particles in the top and 

in the bottom layer from the MD particle velocity: 

 1 1 ,p p layer ju u u        (15) 

The above quantity is computed for all particles within a distance of 2 nm from the top or 

bottom boundary, which is within the effect of the periodic boundary condition. The 

corrected velocity of the boundary layer particles is defined as a sum of the computed 

velocity fluctuation and the meanflow velocity in accordance with the analytical solution  

 1 1 1 2p pu u u x   

so that near the boundaries the shear-corrected coordinate equation (10) is replaced by: 
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3   Validation 
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3.1 Initial calibration of the MD-FH model 

A. Water at equilibrium conditions 

As discussed in [51], accuracy of the one-way coupled MD-FH method for multi-resolution 

simulations of water is sensitive to calibration parameters such as the spatial width of the 

hybrid zone where min maxS s S   as well as the size of the pure MD zone, which are 

determined by MDR  and FHR  parameters of the s -function (12). 

For the validation purposes, the test case of simulating water at equilibrium conditions 

corresponding to room temperature, T=298K is considered first.  The spherical-shape 

distribution of the s-function is specified in the centre of the cubic computational domain 

(7.19 nm)3 with periodic boundary conditions in all 3 coordinate directions.  Fig.1a shows 

initial distribution of MD particles where the pure MD zone (red) gradually merges with the 

hybrid atomistic-continuum zone (white) and then with the hydrodynamics region (blue). In 

the MD simulation, Extended Simple Point Charge (SPC/E) water model is used. The 

standard Nose-Hover thermostat is applied and the reference temperature is 298.15 K. The 

MD integration time step is 2 fs, and the total simulation time is 1 ns. The reaction field 

electrostatics is applied where the cut-off length is 1.0 nm, the dielectric constant is 78, and 

the van der Waals cut-off length is 1.0 nm. For solving the hydrodynamic equations, the 

entire solution domain is decomposed into 53 control volumes or MD “bins”.  The   and   

parameters of the hybrid coupling scheme are set to 100 nm2ps-1. 

An important property of a scale-resolved model is to correctly capture the radial distribution 

function (RDF) and velocity autocorrelation functions (VACFs). In application to the 

suggested MD-FH model, this means a correct preservation of RDF and VACF functions in 

the inner all-atom MD region ( s =0) to investigate if these functions are not affected by 

proximity of the hybrid region of the model. Fig.1b,c shows results of analysis for a probe 
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point location in the inner MD zone where the RDF and VACF distributions are extracted for 

oxygen. The parameters of the hybrid zone of the MD-FH model are 0.3 / 2MDR L  and 

0.8 / 2FHR L , where L  is the size of the computational domain, L =7.19 nm.  

The obtained distributions of RDF and VACF are in a good agreement with the reference all-

atom MD simulations. Following [51], the standard deviations of density and velocity of the 

pure MD zone of the hybrid method solution have also been verified to be in a good 

agreement with the reference all-atom MD solution. The results of this test have provided 

typical values of the hybrid model parameters when the accuracy of the method for multi-

resolution water simulations could be sufficient. 

  

 

(a) 
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   (b)      (c) 

Figure 1. Initial testing of the hybrid MD-FH method for water in equilibrium conditions: 

domain decomposition of the computational domain that includes the pure MD region (red) 

where s = 0, the hybrid zone (white) where s gradually changes from 0 to maxs , and the 

hydrodynamics-dominated zone where maxs s  (blue) (a) and comparisons of the obtained 

RDF (b) and VACF (c) distributions for oxygen atoms in the inner pure MD region with the 

“true” distributions obtained from the reference all-atom MD simulation. 

 

B. Steady Couette flow problem 

 

The same hybrid water model is now considered under the steady Couette flow conditions as 

discussed in Section 2.3. The initial condition corresponds to zero flow as for the equilibrium 

water system shown in fig.1a. The flow is started impulsively by specifying the constant 

velocity in the entire fluid volume in accordance with the modified coordinate equations (10), 

(11), and (16). A typical instantaneous distribution of water molecules affected by the 

velocity strain is shown in fig. 2a. The original spherical distribution of the MD particles (red) 

and the hybrid (white) zone is reshaped consistently with the drag applied through the non-
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slip boundary conditions on the top and the bottom boundaries. The colours correspond to 

distribution of MD particles in the solution domain at the initial time moment (fig.1a). Hence, 

the mixture of red and white “solute” in the initial central zone shows that the MD particles 

freely migrate from the pure MD zone to the continuum mechanics periphery and back in 

accordance with the governing equations.  

It should be pointed out that despite the atoms in the pure MD zone rapidly mix out with the 

surrounding MD particles in the continuum zone under the shear flow effect, the number of 

“fully-atomistic” particles in the pure MD zone remains approximately the same. This is 

because the total number of MD particles in the simulation does not change because of the 

periodic boundary conditions and the “washed away” MD atoms being quickly replaced by 

the particles coming to the fully atomistic region from the hydrodynamic region. The particle 

exchange mechanism is driven by the MD-FH forcing at the periphery of the pure MD zone 

that has been appropriately calibrated to prevent the artificial “phase separation”. 

It should be pointed out that the forcing terms of the current MD-FH model is identically zero 

in the pure MD region, hence, the atoms in MD region are accelerated by the flow through 

their interaction with the particle-hydrodynamic region at the periphery. That is, there is no 

artificial forcing applied to the atoms in the pure MD domain, which is simulated in a full 

accordance with the inter-atomic potentials of the standard equilibrium molecular dynamics. 

This can be compared with some of the Non-Equilibrium MD methods which apply an 

artificial force on all atoms directly to simulate the flow effect [59]–[61]. 

For smooth transition from one description to another, the   and   parameters of the hybrid 

algorithm are adjusted to the lower end of their range so that they are both equal to 10 nm2ps-

 1. The MD integration time step is reduced to 1 fs for stability. It can be noted that both 



23 
 

adjustments are required due to simplicity of the current hybrid model in comparison with 

more sophisticated models such as those considered by [51] and [52]. 

Accuracy of the MD-FH model for the steady Couette problem is assessed by comparing the 

meanflow velocity profile across the transverse direction of the computational domain with 

the analytical solution. As described in Section 2.3, the whole domain is split into 16 layers in 

the transverse direction and the mean particle velocity in the flow direction is calculated at 

each integration time step in each layer. After appropriate time averaging, the resulting 

meanflow velocity profile is compared with the analytical solution. 

In order to estimate how effectively MD atoms get entrained in the shear flow, sensitivity of 

the hybrid model solution to the size of the hybrid MD/hydrodynamic zone is investigated. 

Two different combinations of MDR  and FHR  parameters of the hybrid model are examined. 

The two cases correspond to the same radius of the pure MD region MDR  equal to 0.3 / 2L  

and different radius of the external hydrodynamic zone, FHR  which varies from  0.6 / 2L  to 

0.8 / 2L . Fig. 2b shows that the meanflow velocity profiles corresponding to the two 

configurations of the hybrid model are in a good agreement with the analytical solution. This 

confirms a moderate sensitivity of the solution to the width of the hybrid zone around the 

considered range of parameters. 
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  (a)      (b) 

Figure 2. Hybrid MD-FH method for water simulation under velocity strain: a typical 

distribution of water molecules in the hybrid MD-FH domain after 10 ps since the start of the 

simulation (a) and comparison of the meanflow velocity profile with the analytical solution 

for different configurations of the hybrid model, where the first and the second number in the 

hybrid solution legend corresponds to the ratios of the MD zone and the hydrodynamic zone 

sizes to the full domain size, 2 /MDR L  and 2 /FHR L , respectively. 

 

3.2 Effect of the flow velocity strain on molecular diffusion  

A. Analytical modelling 

Following [32] and [33] with assuming that diffusion process is isotropic, e.g. in the absence 

of the strain field [62], analytical expressions for mean square displacements of the diffusing 

particles can be obtained: 
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where  stands for particle ensemble averages and D is diffusion coefficient. 

In assumption that the diffusion tensor is diagonal but not necesserily isotropic the above 

expressions are modified by [56]: 
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and 
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For the steady Couette flow problem of interest in the current publication, the following 

expression for the mean square particle displacement in the flow direction as a function of the 

mean square displacement without the convection effect, 2

1 ( )q t  can be further obtained 

[56]: 
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For Newtonian liquids, such as water at normal conditions, the correlation 1 2( ) ( )q t x t   is 

neglected and the mean square displacement in the homogeneous flow direction, 2

3 ( )x t  is 

not affected by the flow. This leads to an explicit relation between the mean square particle 

displacement in the flow direction, 2

1 ( )x t  and the homogeneous flow direction, 2

1 ( )x t  as 

follows: 
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2 2 2

1 3( ) (x t x t t         (21) 

The same relation can be obtained from the simple analytical model based on the idea of 

scale decomposition as described below: 

Let us assume that the velocity of a diffusing particle consists of two components, the small-

scale random diffusion velocity ud  and the large-scale convection flow velocityuc  induced 

due to the macroscopic flow effect: 

 u u up d c         (22) 

where the convection velocity is 
1( ,0,0)c cuu  and equal to the mean particle velocity, u p

. 

Here  means the paricle ensemble averaging. 

By integrating equation (22) in time, an equation for particle coordinate in the flow direction 

follows, 

' '

1 1 1 1( ) ( )
t t

p p d cx t x u dt u dt
 

 
 

 

            (23) 

By definition, the mean-square particle displacement in the flow direction is 

2 2

1 1 1( ) ( ( ) ( ))p px t x t x t    , 

which using (23) is identical to 

2 ' ' 2

1 1 1( ) ( )
t t

d cx t u dt u dt
 

 

 

      .    (24) 

By re-arranging the right-hand-side of equation (24) and recalling that the radom diffusion 

velocity corresponds to zero mean, e.g. 1 0du  , the following expression for the mean 

square displacement in the flow direction is obtained  
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where 
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    in accordance with the homogeneous flow assumption in 

the 3x –direction and 
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  , where the overbar means the appropriate time 

averaging. It can be noted that the above equation is identical to (21) with 2

1cu  . 

 

To further progress with analytical modelling let us recall that instantaneous 1 1 2( ( ))c c pu u x t  

and assume that  
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where the overbar means time averaging. 

Let us suppose there is an hydrodynamic focusing effect due to the shear flow on diffusing 

particles so that their motion is restrained to a central slub of the Cuette flow domain away 

from the moving “walls” in the 2x -direction. For example, let us assume that the duffusing 

particles spend most of the time within a middle part of the solution domain 

3/ 2 / 2 / 2L x L L     , where 0 1  . 

By using (26) and recalling that 1 2 2 max( ( )) ( )c p pu x t x t V   and max / 2V L , the square of 

the effective convective velocity, 2

1cu   can be estimated from the following relation: 
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which can be integrated analytically to obtain 



28 
 

2 3
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1
(1 ( 1) )

3
V          (28) 

For the limiting cases, it can be noted that 1   corresponds to the diffusing particles being 

uniformly distributed across the flow domain and 0   corresponds to the situation when all 

the particles all clustered in the center of the flow where the effective convection velocity is 

zero.  

 

B. Water self-diffusion with and without the shear flow 

The effect of velocity strain on water self-diffusion properties is investigated using the hybrid 

MD-FH model of the steady Couette flow problem, which was considered in section 3.1B.  

The translational self-diffusion coefficients D  is obtained from the Einstein relation in 

accordance with the following expression for the Mean Square Displacement (MSD): 

2( ) ( ) 6MSD t r t A Dt    . For validation purposes, the diffusion coefficient is first 

computed in the zero flow case as consdered by [46]. The MSD is calculated in the inner MD 

region of the stationary s-function distribution and the results are compared with the 

reference solution obtained from the all-atom MD simulation for water in Fig. 3 (b).  

As noted by [46], the calculation of mean square deviation of water particles for self-

diffusion is not straightforward. In comparison with the all-atom MD simulations, particles 

may freely leave and enter the hydrodnamic zone of the model, where the molecular diffusion 

in no longer resolved explicitly. For example, as soon as a molecule initiated in the pure MD 

domain center reaches periphery of the hybrid zone, the reminder of its trajectory is 

contaminated by hydrodynamics and cannot be used in the calculation of the molcular 

diffusion coefficient using the Einstein equation.  
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Only those particles which remain in the pure MD zone all time are considered in the particle 

ensemble averaging and a modifed routine for computing MSD in GROMACS has been used. 

The routine only considers a small part of the MD particles which are initially located in the 

central part of the pure MD domain within the radius of 0.3 nm (1-4 molecules). Furthermore, 

10 short simulations (250 ps each) are run in order to limit the probability of the selected 

water molecules to leave the pure MD zone. The outcomes of the simulations are averaged to 

produce the resulting mean square deviation.  

Fig.3a shows results of the mean square displacemment simulations for the three spatial 

directions, 2

1 ( )x t , 2

2 ( )x t , and 2

3 ( )x t  as well as the total MSD(t) equal to the sum of 

the three. It can be noted that the three MSD corressponding to different directions of the 

isotropic space are very similar as expected. This suggests the statistical convergence 

obtained is reasonable and there are no notable artefacts which would skew the symmetry. To 

analyse how much the MSD trajectories of the hybrid solution  are contaminated by the 

interaction with hydrodynamics, fig.3b compares the total MSD results of typical 5 short 

simulations with the avearged MSD trajectory which was produced from the reference all-

atom MD simulation. The fluctuations at the end parts of the trajectories in fig.3b come from 

the hydrodynamic region effects. From comparison of fig.3a and b, it can be seen that at 

100ps most MSD trajectories of the hybrid solution overpredict the mean square 

displacement of the all-atom MD solution by about 30%, which approximately is the same 

error in diffusion coefficient as reported by [46].  

It should be noted that the water self-diffusion coefficient obtained from the reference all-

atom MD simulation, D=2.6810-5cm2/s is in excellent agreement with the experimental 

measurements,  D=(2.57 0.022) 10-5cm2/s which were reported by [63] for the same 

temperature. This is despite the fact that in the current computations of the diffusion 
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coefficient there are no correction for finiteness of the periodic box domain used. On the 

other hand, as discussed in [64], the finite box size correction could be important for 

computing the diffusion coefficient in complex fluids such as a polymer chain consisting of 

30 monomers in a solvent. This suggests that, for diffusion computations in “simple fluids” 

like water, the finite-side box effect is not very important. Furthermore, it can be reasonably 

assumed that the diffusion computation in water that contains a small peptide molecule is 

neither strongly affected by the finite size of the computational box domain. 

 

Having validated results of the present hyrbid method for the zero-flow case, the mean square 

deviations are computed for the steady Couette flow. Fig.3c shows the corresponding MSD 

solutions obtained for the flow direction, 1x ,  the transverse flow direction, 2x , and in the 

homogenuous flow direction, 3x . It can be seen that the MSD trajectory in the direction 

transverse to the flow has some higher slope than that in the spanwise 3x  direction, which is 

consistent with the literature [56]. Notably, the mean square deviation in the flow direction 

grows fastest due to the flow convection as expected. Fig.3d compares the MSD trajectory in 

the flow direction with a fitted curve in accordance with the theory, Eq.(21). The agreement 

with the fitted parabolic curve is reasonable over the first 60-70ps of the partcle trajectories 

where the diffusion results are not strongly contaminated by the hydrodynamic effects. This 

suggests that the simulated water flow has Newtonian properties as expected in the physical 

water experiment at normal conditions. 
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(a) (b) 

 

   (c)      (d) 

Figure 3. Effect of the flow on MSD trajectories: ensemble-averaged MSD trajectories from 

the hybrid method solution for water without flow along the 1x , 2x , and 3x  coordinate 

directions and the total MSD (a), typical samples of the total MSD trajectories in comparison 

with the reference all-atom total MSD solution with no flow applied (b), ensemble-averaged 

MSD trajectories along the 1x , 2x , and 3x  coordinate directions and the total for the shear 

flow applied (c), and the ensemble-averaged MSD trajectory along the 1x  direction and the 

fitted curve in accordance with the theoretical solution for Newtonian fluids (d). 

 

C. Peptide diffusion in water with and without the shear flow  
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Following [46] a small peptide molecule in water is considered, which corresponds to the 

zwitterionic form of dialanine. Dialanine is the smallest protein consisting of only two 

aminoacid residues. It is popular for biomolecular research as it is simple and easy to analyse. 

In the present work, the zwitterion dialanine diffusion in water is simulated with and without 

the flow velocity strain effect. 

Fig.4 shows the initial configuration of the MD-FH model where the solvated peptide 

molecule is introduced in the centre of the pure MD zone (comp. with fig.1a). Following [47], 

the centre of the pure MD zone in not fixed but locked to the centre of mass of the peptide so 

that the latter always remains surrounded by a water shell at all-atom resolution. After each 

time step when the peptide moves, the s-function (12) is recalculated accordingly. Such 

dynamic tracking allows one to use long trajectories of the peptide molecule when calculating 

its diffusion coefficient in comparison with using short data samples which were necessary 

for the stationary s-function case considered in Section 3.2B. 

In comparison with the hybrid method configuration for pure water, the size of the pure MD 

region for the peptide case is increased to 0.5 / 2MDR L  while the size of the outer 

hydrodynamic shell is approximately the same, 0.8595 / 2FHR L . These empirical 

parameters were adjusted so that the hybrid method solution of the peptide diffusion in water 

at equilibrium conditions remains in a good agreement with the reference all-atom MD 

simulation. For improved statistical averaging, 10 independent simulations of the hybrid MD-

FH model with a start from different realisations of initial conditions are performed, 1ns 

duration each. The ensemble averaged MSD results for the no flow case are shown in Fig. 5. 

In particular, fig. 5a shows that the MSD trajectories in three different coordinate directions 

are very close one to another, as expected from the no-flow case when the peptide diffusion 

should be isotropic. Again, the absence of notable asymmetries suggests that the parameters 
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of the hybrid method have been calibrated correctly and the ensemble averaged solutions are 

sufficiently converged. Fig. 5b illustrates the process of extracting the slope from the 

averaged total MSD trajectory from which the peptide diffusion coefficient is found in 

accordance with the Einstein relation. As predicted from the hybrid simulation, the diffusion 

coefficient value is 
5 21.099 10 /cm s . Given the uncertainty of the fit procedure, this 

predicted value is in a very good agreement with the reference all-atom MD simulation for 

the same system, which is 
5 20.86 10 /cm s .  

 

 

Figure 4. The hybrid MD-FH model of fig.1a with a small dialanine molecule immersed in 

water in the centre of the pure MD zone, which moves so that its centre is locked to the centre 

of mass of the molecule at all times. 
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   (a)      (b) 

Figure 5. Hybrid method solutions for the peptide diffusion in water with no flow: ensemble 

averaged MSD trajectories along the 1x , 2x , and 3x  coordinate directions and the total (a) and 

the total MSD trajectory with a trend line extracted for calculation of the diffusion coefficient 

(b). 

 

Finally, the same peptide in water is simulated under the steady Couette flow conditions by 

switching on the shear flow effects in accordance with equations (10), (11), and (16).  

The same MSD calculation routine is applied to investigate the influence of the introduced 

strain field on the peptide diffusion and the results for different coordinate directions with 

respect to the flow are shown in fig. 6a. Again, it can be seen that the diffusion in the 

transverse 2x  direction is faster in comparison with the homogeneous flow direction, 3x . This 

is consistent with the literature [56] and is in-line with the results for water self-diffusion 

coefficients, which have been reported in section 3.2B. 

The diffusion in both directions normal to the flow, 2x  and 3x  is much slower in comparison 

with the mean square displacement in the flow direction, 1x  that includes the flow convection 

effect and shows a non-linear growth with time. To quantify the latter time dependency, 



35 
 

fig.6b compares the MSD trajectory in the flow direction with a parabolic function fit based 

on the theoretical model (21) that is valid for Newtonian fluids. From a good agreement of 

the MSD trajectory with the analytical parabola curve it can be concluded that the compound 

fluid, which can be regarded as a much diluted protein water solution, exhibits similar 

Newtonian properties to the pure water. For accurate curve fitting, the fit parameter,   is 

evaluated by re-arranging Eq(21) to a suitable form so that 

2 2

1 3( ) ( )1
log

2
1

log( )

x t x t

t



   
 
 
    as 

shown in fig.6b. This results in the value of 2

max0.1444 V   , which in accordance with 

Eq(28) gives 0.172 1  . This value corresponds to the width of the flow domain, which is 

effectively occupied by the diffusing molecule. The value is notably less than one, which 

suggests that there is a marked hydrodynamic focusing effect on the peptide diffusion by the 

flow. The shear flow effect is such that the diffusing peptide molecule tends to be 

“sandwiched” within some 20% of the flow volume between the top and the bottom flow 

streams moving in opposite directions. 

 

 

   (a)      (b) 
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(c) 

Figure 6. Hybrid method solutions for the peptide diffusion in water in the steady Couette 

flow: ensemble averaged MSD trajectories along the 1x , 2x , and 3x  coordinate directions and 

the total MSD (a) and the ensemble-averaged MSD trajectory along the x1 direction and the 

fitted curve in accordance with the theoretical solution for Newtonian fluids (b),(c),  

 

4   Conclusion  

The Molecular Dynamics - Fluctuating Hydrodynamics (MD-FH) model has been extended 

for modelling of the velocity strain effect on molecular diffusion in water including self-

diffusion and a small peptide molecule diffusion in water. 

A one-way coupled model has been considered, where the MD particle equations are 

modified by the presence of hydrodynamic gradients in the coarse-grained part of the hybrid 

model. For the simulations, a small volume of the Couette flow is considered, which could be 

representative to a central section of a dual-stream laminar-flow micro-fluidic channel. An 

appropriate modification of the boundary conditions is implemented to strictly preserve the 

non-slip boundary condition at the moving “walls” in the transverse flow direction. 
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The hybrid model has been carefully calibrated to preserve the correct meanflow velocity 

profile. For the no-flow case, the radial distribution and the velocity autocorrelation functions 

as well as the water and peptide diffusion coefficients are in a good agreement with the 

reference all-atom MD simulations. 

For diffusion simulations under the shear flow, predictions of the suggested hybrid model are 

in a qualitative agreement with the existing data in the literature. In particular, the molecular 

diffusion in the transverse flow direction is faster than that in the span-wise homogeneous 

flow direction and the diffusion in the flow direction includes the convection effect which is 

not correlated with the diffusion as expected for Newtonian flows. 

A simple analytical model is proposed to elucidate the velocity strain effect on molecular 

diffusion for Newtonian fluids. The model is based on the idea of scale separation between 

the diffusion and convection processes and is in agreement with the existing theories of 

molecular diffusion in the literature. It has been used to quantify the effect of the peptide 

focusing by the hydrodynamic gradient in water as revealed in the present simulations: the 

diffusing peptide molecule is effectively “sandwiched” within some 20% of the flow volume 

between the top and the bottom flow streams moving in opposite directions. 

Future work will be devoted to the implementation of more sophisticated versions of the two-

phase flow analogy method, which would be more computationally efficient and less 

dependent on the calibration parameters. For example, this could include adaptation of the 

recent work of the authors on the multi-resolution particle modelling for a smoother transition 

of MD particles to continuum hydrodynamics as well as considering the particle feedback 

effect on the flow. Future work will also address effects of the computational domain size and 

the peptide concentration in water on the effective focusing of peptide diffusion by the 

velocity strain field as well as evaluate the importance of correction for diffusion 

computations in the current small periodic computational domain. 
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